Hydrospheric Tracers and Proxies (HydroTraP)


The hydrosphere encompasses water on earth in its entirety and thus permeates all compartments of the environment. The hydrological cycle is a central part of the global climate system and replenishes vital freshwater resources in lakes, rivers and aquifers. In addition, water and ice store information on the climate of the past.

The HydroTraP group uses various trace elements, compounds and isotopes (tracers) contained in liquid water as well as in ice for age dating, to obtain information on the chronology of archives and the dynamics of surface and subsurface waters as well as glaciers. Atmospheric noble gases and water isotopes additionally serve as proxies for environmental conditions during the formation of water and ice masses, such as past temperatures and other climate parameters. HydroTraP uses these methods to contribute to water resources management as well as for paleoclimate reconstruction.


Grundwasserprobennahme bei Rennes, Frankreich

The HydroTraP group deals with the experimental development, methodical improvement and practical application of tracer and proxy methods in the hydrosphere (groundwater, lakes, and oceans) as well as in climate archives (speleothems, glaciers, and aquifers). Our central tools are stable and radioactive isotopes of the noble gases (3He, 4He, main isotopes of Ne, Ar, Kr, Xe sowie 39Ar, 81Kr, 85Kr, 222Rn). Often we use the noble gases in combination with classical methods of isotope hydrology (2H, 18O, 3H and 14C) or with transient environmental tracers (SF6, CFCs).

Information on many of our current and completed research projects can be found on the pages of DFG (GEPRIS Project Details on W. Aeschbach). Many projects are connected to thte innovative development of Dating by Atom Trap Trace Analysis (ATTA). Additional links to individual projects:

Current research projects

  • Systematic improvement of 39Ar Atom Trap Trace Analysis and its application to derive a millennial paleotemperature record from groundwater
    DFG project page
  • ArTTA-10mL: An instrument for 39Ar-dating of small ice and water samples
    DFG project page
  • Fluid inclusion water isotopes in speleothems using CRDS – understanding carbonate d18O responses
    DFG project page

Grundwasserprobennahme in Jordanien

Completed research projects


Seewasserbeprobung am Willersinn Weiher, Ludwigshafen


Our experimental methods encompass two compartments: tracers and proxies. Samples are analyzed in different laboratories, partly also on commission. For data analysis and interpretation, different kinds of software have been developed and can be downloaded for free.

Tracers and Proxies

The following tracers are applied. Further information can be found on our methods page.

  • Dating Tracers (3H, 3He, 4He, 14C, 39Ar, 81Kr, 85Kr, 222Rn, SF6, CFCs)
  • Proxies for environmental conditions(2H, 18O, main isotopes of Ne, Ar, Kr, Xe)



The different tracers and proxies are analyzed in specialized laboratories:

  • Noble gas mass spectrometry laboratory (3H, 3He, 4He, main isotopes of Ne, Ar, Kr, Xe)
  • ATTA extraction laboratory (39Ar, 81Kr, 85Kr, analysis at KIP)
  • Gas chromatography laboratory (SF6, FCKWs)
  • 14C extraction and graphitization (14C, analysis at the Klaus-Tschira-Labor, Mannheim)
  • Radon monitors (222Rn)
  • Analysis of stable isotopes (2H, 18O)

The laboratories are also part of the Heidelberg Environmental Analytics Platform (HEAP) of the Heidelberg Center for the Environment (HCE). More information can be found here



Analysis of noble gases and tritium can be done on commission. For more information please contact or Sampling instructions can be found on our methods page.



HydroTraP has developed a number of programs for the data analysis of tracers and proxies. Those software tools are available for download.

Modeling noble gas concentrations in (ground)water:

Inverse determination of model parameters by weighted least squares fitting. There are three programs available: A simple MS EXCEL workbook, a more sophisticated MATLAB routine, and finally the very versatile, stand-alone program PANGA. The old, simpler EXCEL workbook developed by myself is available here: Noblebook. The MATLAB routine developed by Frank Peeters is available at EAWAG: Noble gas fitter. There is new version available (since Dec. 2003), and an updated manual.

The new software PANGA developed by Michael Jung is available here: PANGA page.

Modeling age tracer data in young (ground)water:

Box-model approaches to interpret 3H(-3He), CFC, and 85Kr data. The software "Boxmodel V3"  is a MICROSOFT EXCEL workbook, designed for educational purposes. It has originally been developped by Kai Zoellmann, and later been expanded by myself and used for a UNESCO-workshop by Urs Beyerle. Workbook and documentation are provided here for free download.

Boxmodel_V3 workbook (0.5 MB MS-Excel file)
Boxmodel documentation (1 MB pdf-file).



Arbeitsgruppenfoto 2019

Name Postition Email ( Phone (+49 6221 54)
Name Funktion Email-Benutzername ( Telefon (+49 6221 54)
Werner Aeschbach Group leader (Prof.) Aeschbach 6331
Yannis Arck PhD student Yannis.Arck 6315
Simon Dischl Master student Simon.Dischl 6316
Kathrin Foshag Post-Doc Kathrin.Leutz 6313
Florian Freundt Post-Doc Florian.Freundt 6316
Alexandra Koelbl Master student akoelbl  
Jonathan Kolar HiWi    
Ann-Kristin Kunz Bachelor student    
Timo Metz Master student   6316
Sophie Negele Master student    
Halua Pinto Post-Doc    
Stefan Schäfer Technician Stefan.Schaefer 6387
Maximilian Schmidt PhD student schmidtm 5174
Cornelis Schwenk Master student    
David Wachs PhD student David.Wachs  



See the list of completed theses.



Prof. W. Aeschbach hält eine Vorlesung


The following environmental physics lectures are offered by HydroTraP:

  • Co-operation of the master’s core course „Environmental Physics“ (MKEP4)
  • Annual master’s specialization lecture „Physics of Aquatic Systems“ (MVEnv3)
  • Master’s specialization lectures „Isotope Hydrology“, „Groundwater Science“ and other topics
  • Supervision of the experiment “Limnology” in the Advanced Physics lab for Physicists

More information on lectures and seminars can be found here.

Graduate theses

HydroTrap offers all types of graduate theses. Completed theses are listed in the following.

PhD theses

  • Leutz, K., 2019. Klimawandel an öffentlichen Plätzen der Stadt Heidelberg. Transdisziplinäre Herausforderungen urbaner Räume. Dissertation, Universität Heidelberg, 277 Seiten. pdf (23 MB)
  • Kersting, A., 2018. Dating of groundwater and ocean samples with noble gas radioisotopes – sample preparation and field applications. Dissertation, Universität Heidelberg, 161 Seiten. pdf (30 MB)
  • Freundt, F., 2017. Application of Helium Isotopes in Shallow Groundwaters for Geothermal Energy Exploration in the Upper Rhine Graben. Dissertation, Universität Heidelberg, 184 Seiten. pdf (48 MB)
  • Mayer, S., 2017. Dynamics of reactive and inert gases in soil air and groundwater in the context of noble gases as environmental tracers. Dissertation, Universität Heidelberg, 266 Seiten. pdf (14 MB)
  • Schneider, T., 2014. Eine Paläoklimastudie an einem Grundwasseraquifersystem in der Nordchinesischen Ebene. Dissertation, Universität Heidelberg, 227 Seiten. pdf (75.8 MB)
  • Jung, M., 2014. Dissolved Noble Gases in Groundwater: Properties of the Closed-System Equilibration Model and Review of Data Sets from the Literature. Dissertation, Universität Heidelberg, 106 Seiten. pdf (4.2 MB)
  • Kaudse, T., 2014. Noble gases in groundwater of the Azraq Oasis, Jordan, and along the central Dead Sea Transform - Two case studies. Doktorarbeit, Universität Heidelberg, 228 Seiten. pdf (58.1 MB)
  • Reichel, T., 2013. Groundwater Degassing and Separation of Argon from Air for 39Ar Dating with ATTA. Doktorarbeit, Universität Heidelberg, 142 Seiten. pdf (55.7 MB)
  • Wieser, M., 2011. Imprints of climatic and environmental change in a regional aquifer system in an arid part of India using noble gases and other environmental tracers. Dissertation, Universität Heidelberg, 208 Seiten. pdf (72.5 MB)
  • Friedrich, R., 2007. Grundwassercharakterisierung mit Umwelttracern: Erkundung des Grundwassers der Odenwald-Region sowie Implementierung eines neuen Edelgas-Massenspektrometersystems. Dissertation, Universität Heidelberg, 271 Seiten. pdf (14 MB)
  • Kreuzer, A., 2007. Paläotemperaturstudie mit Edelgasen im Grundwasser der Nordchinesischen Tiefebene. Dissertation, Universität Heidelberg, 146 Seiten. pdf (3.2 MB)
  • El-Gamal, H., 2005. Environmental tracers in groundwater as tools to study hydrological questions in arid regions. Dissertation, Universität Heidelberg, 146 Seiten. pdf (3.5 MB) link in HeiDoK

Master's and Diploma theses

  • Arck, Y., 2019. Noble Gas measurements on groundwater samples from Mount Etna. Masterarbeit, Universität Heidelberg, 70 Seiten.
  • Rädle, V., 2019. Multi-tracer study for groundwater dating in Southern Oman. Masterarbeit, Universität Heidelberg, 143 Seiten.
  • Rosendahl, C., 2018. Novel one-step pressure reduction for OmniStar GE-MIMS. Masterarbeit, Universität Heidelberg, 95 Seiten.
  • Hopkins, P., 2018. Überprüfung der Reproduzierbarkeit von Grundwasserdatierungen mit Hilfe von SF6 und FCKWs. Masterarbeit, Universität Heidelberg, 132 Seiten.
  • Speicher, R., 2018. Refining the Sampling and Extraction for Groundwater Dating with Radiocarbon. Masterarbeit, Universität Heidelberg, 89 Seiten.
  • Jenner, F., 2017. Modeling seasonal variations of subsurface gas dynamics and soil gas compositions in the context of inert gas transfer applications. Masterarbeit, Universität Heidelberg, 124 Seiten.
  • Beyersdorfer, S., 2016. Argon extraction from glacier ice and ocean water for dating with 39Ar - ATTA. Masterarbeit, Universität Heidelberg, 99 Seiten.
  • Mathouchanh, E., 2015. Krypton separation from argon for Atom Trap Trace Analysis of 85Kr and 81Kr. Master’s internship report, Universität Heidelberg und Université Paris-Sud, 52 Seiten.
  • Beck, B., 2014. Lokalisierung von aktiven geologischen Störungszonen im Oberrheingraben durch Messung von 3He/4He-Verhältnissen in der Bodenluft. Diplomarbeit, Universität Heidelberg, 161 Seiten.
  • Weißbach, T., 2014. Noble gases in palaeogroundwater of glacial origin in the Cambrian-Vendian aquifer, Estonia. Masterarbeit, Universität Heidelberg, 129 Seiten.
  • Tsur, N., 2013. Noble gas isotopic signatures in thermal waters of the Dead Sea Transform, Israel. Masterarbeit, Universität Heidelberg, 109 Seiten.
  • Kersting, A., 2013. A new method of krypton purication for groundwater dating with atom trap trace analysis. Diplomarbeit, Universität Heidelberg, 76 Seiten.
  • Walser, A., 2013. Characterization of a New Quadrupole Mass Spectrometer for Precise Noble Gas Analysis. Diplomarbeit, Universität Heidelberg, 139 Seiten.
  • Klose, S., 2013. Modeling of Noble Gas Concentrations in Soil Air and the Effect on Concentrations in Groundwater. Masterarbeit, Universität Heidelberg, 113 Seiten.
  • Mayer, S., 2012. Analyzing short-term fluctuations of noble gas concentrations in soil air and groundwater. Masterarbeit, Universität Heidelberg, 155 Seiten.
  • Sander, T., 2012. Investigation of the reproducibility and accuracy of noble gas measurements on small water samples. Diplomarbeit, Universität Heidelberg, 78 Seiten.
  • Görger, S. M., 2012. Noble gas studies on the origin of deep anoxic hyper-saline brines in the Eastern Mediterranean Sea: Methods and interpretation. Diplomarbeit, Universität Heidelberg, 137 Seiten.
  • Schwefel, R., 2012. Methoden zur Probenaufbereitung von Eis- und Grundwasserproben zur 39Ar-Datierung mittels "atom trap trace analysis". Diplomarbeit, Universität Heidelberg, 107 Seiten.
  • Bröder, L., 2011. A Paleoclimate Record from Groundwater of the Great Artesian Basin in Australia. Diplomarbeit, Universität Heidelberg, 100 Seiten.
  • Freundt, F., 2011. Measuring annual variation of soil atmosphere composition focusing on the effect of oxygen depletion on noble gas partial pressures. Diplomarbeit, Universität Heidelberg, 119 Seiten.
  • Herb, C., 2011. Paleoclimate study based on noble gases and other environmental tracers in groundwater in Dhofar (Southern Oman). Diplomarbeit, Universität Heidelberg, 197 Seiten.
  • Sorger, S., 2010. Bestimmung der SF6-Konzentration von Wasserproben mit Kupferzylindern als Probenahmegefaßen. Diplomarbeit, Universität Heidelberg, 85 Seiten.
  • Jung, M., 2009. Aufbau eines Systems zur Gasanalyse von Fluideinschlüssen in Speläothemen. Diplomarbeit, Universität Heidelberg, 64 Seiten.
  • Reichel, T., 2009. Optimierung eines Verfahrens zur Radonmessung in Wasser. Diplomarbeit, Universität Heidelberg, 69 Seiten.
  • Schneider, T., 2009. Einfluss von Sauerstoffzehrung auf Edelgaspartialdrücke in Bodenluft. Diplomarbeit, Universität Heidelberg, 97 Seiten
  • Marx, T., 2008. Weiterentwicklung des Mess- und Extraktionssystems zur Bestimmung von Edelgastemperaturen aus Spelaothemen. Diplomarbeit, Universität Heidelberg, 81 Seiten.
  • Kluge, T., 2008. Fluid inclusions in speleothems as a new archive for the noble gas palaeothermometer. Dissertation, Universität Heidelberg, 191 Seiten.
  • von Oehsen, A., 2008. Parameter Estimation and Model Validation for Models of dissolved Noble Gas Concentrations in Groundwater. Diplomarbeit, Universität Heidelberg, 100 Seiten.
  • Wonneberger, A., 2008. Novel Methods of Water Sample Preparation for 39Ar Analysis. Diplomarbeit, Universität Heidelberg, 75 Seiten.
  • Beyersdorff, E., 2007. Analytik und Interpretation von Edelgasdaten aus Grundwasser und Anwendung auf eine Paläoklimastudie in Algerien. Diplomarbeit, Universität Heidelberg, 123 Seiten.
  • Ebert, C., 2007. Untersuchung neuer Verfahren zur Radonextraktion aus Wasser. Diplomarbeit, Universität Heidelberg, 66 Seiten.
  • Kopf, M., 2007. Labor- und Feldexperimente zur Bildung von Excess Air im Grundwasser. Diplomarbeit, Universität Heidelberg, 221 Seiten.
  • Wieser, M., 2006. Entwicklung und Anwendung von Diffusionssamplern zur Beprobung gelöster Edelgase in Wasser. Diplomarbeit, Universität Heidelberg, 154 Seiten.
  • Kluge, T., 2005. Radon als Tracer in aquatischen Systemen. Diplomarbeit, Universität Heidelberg, 91 Seiten.
  • Träumner, K., 2005. Inbetriebnahme, Tests und erste Anwendung einer neuen Anlage zur massenspektrometrischen Messung von Edelgasen aus Grundwasser- und Stalagmitproben. Diplomarbeit, Universität Heidelberg, 113 Seiten.
  • Klement, R., 2005. Optimierung von SF6-Grundwasserprobenahme-Methoden. Diplomarbeit, Universität Heidelberg, 91 Seiten.
  • Rice, S., 2004. The development of a method for the extraction and measurement of noble gases from fluid inclusions in samples of calcium carbonate. Masterarbeit, Universität Heidelberg, 65 Seiten.

Bachelor's theses

  • Hopkins, P., 2015. Überprüfung der Reproduzierbarkeit von Grundwasserdatierungen mit Hilfe von SF6 und FCKWs. Bachelorarbeit, Universität Heidelberg.
  • Jenner, F., 2014. Untersuchung kurzzeitiger SF6- und FCKW-Variationen in der Bodenluft im Kontext der Datierung jungen Grundwassers. Bachelorarbeit, Universität Heidelberg.
  • Zimmerer, K., 2014. SF6-Datierung junger Grundwässer in Heidelberg und Umgebung. Bachelorarbeit, Universität Heidelberg.
  • Schüler, J. W. O., 2014. Kalibrierung eines auf einem Quadrupolmassenspektrometer basierenden Gasanalysesystems und erste Feldmessungen. Bachelorarbeit, Universität Heidelberg.
  • Batvinyeu, K., 2012. Entwicklung einer neuen Methode zur Messung von SF5CF3. Bachelorarbeit, Universität Heidelberg, 32 Seiten.
  • Kalt, J., 2012. Auswirkung von CO2 auf den Strahlungshaushalt in einem Modellversuch. Bachelorarbeit, Universität Heidelberg, 54 Seiten.
  • Schenke, J., 2012. Untersuchung des Äquilibrierungsprozesses von Air Equilibrated Water (AEW). Bachelorarbeit, Universität Heidelberg, 47 Seiten.
  • Kollefrath, A., 2011. Test einer Entgasungsanlage. Bachelorarbeit, Universität Heidelberg, 65 Seiten.
  • Kreyenberg, P., 2011. Test einer Radonentgasungsanlage. Bachelorarbeit, Universität Heidelberg, 57 Seiten.
  • Mayer, S., 2010. Untersuchung der Eignung von Meereswellen zur Elektrizitätserzeugung. Bachelorarbeit, Universität Heidelberg, 58 Seiten.
  • Sonntag, P., 2010. Radon Exchange Processes in the Lake Sediment Pore Water of Lake Willersinnweiher. Bachelorarbeit, Universität Heidelberg, 51 Seiten.

State examination theses

  • Engel, J., 2011. Tests und Weiterentwicklung der Messprozedur fur Gase aus Stalagmiten. Staatsexamensarbeit, Universität Heidelberg, 61 Seiten.
  • Feißt, C. R., 2009. Klimarekonstruktion mit Edelgastemperaturen aus Grundwasser in Dänemark. Staatsexamensarbeit, Universität Heidelberg, 48 Seiten.
  • Lorenz, S., 2008. Entwicklung eines Praktikumsversuches zum Themenbereich Limnophysik. Staatsexamensarbeit, Universität Heidelberg, 134 Seiten.


Papers in peer reviewed journals

  • Kaudse, T., R. Bani-Khalaf, R. Tuffaha, F. Freundt, W. Aeschbach-Hertig, 2016. Noble gases reveal the complex groundwater mixing pattern and origin of salinization in the Azraq Oasis, Jordan. Appl. Geochem. 66: 114-128.
  • Wei W., W. Aeschbach-Hertig, Z. Chen, 2015. Identification of He sources and estimation of He ages in groundwater of the North China Plain. Appl. Geochem. 63: 182-189.
  • Visser A., E. Fourre, F. Barbecot, L. Aquilina, T. Labasque, V. Vergnaud, B. K. Esse, Contributors from participating laboratories, 2014. Intercomparison of tritium and noble gases analyses, 3H/3He ages and derived parameters excess air and recharge temperature. Appl. Geochem. 50: 130-141.
  • Labasque T., L. Aquilina, V. Vergnaud, F. Barbecot, Contributors from participating laboratories, 2014. Inter-laboratory comparison of the analyses of sulphur hexafluoride (SF6) and three chlorofluorocarbons (CFC-11, -12 and -113) in groundwater and an air standard. Appl. Geochem. 50: 118-129.
  • Ritterbusch, F., S. Ebser, J. Welte, T. Reichel, A. Kersting, R. Purtschert, W. Aeschbach-Hertig, M. K. Oberthaler, 2014. Groundwater dating with Atom Trap Trace Analysis of 39Ar. Geophys. Res. Lett., doi: 10.1002/2014GL061120.
  • Aeschbach-Hertig, W., 2014. Radiokrypton dating finally takes off. Proc. Natl. Acad. Sci. 111: 6856-6857.
  • Kluge, T., T. Marx, W. Aeschbach-Hertig, C. Spotl, D.K. Richter, 2014. Noble gas concentrations in fluid inclusions as tracer for the origin of coarse-crystalline cryogenic cave carbonates. Chem. Geol. 368: 54-62.
  • Sander, T., T. Marx, J. Engel, W. Aeschbach-Hertig, 2014. Reproducibility and accuracy of noble gas measurements on water samples in the microlitre range. Rapid Commun. Mass Spectrom. 28: 42-48.
  • Friedrich, R., G. Vero, C. von Rohden, B. Lessmann, R. Kipfer, and W. Aeschbach-Hertig, 2013. Factors controlling terrigenic SF6 in young groundwater of the Odenwald region (Germany). Appl. Geochem. 33: 318?329.
  • Aeschbach-Hertig, W. and D.K. Solomon, 2013. Noble gas thermometry in groundwater hydrology, in: Burnard, P. (Ed.), The noble gases as geochemical tracers. Advances in Isotope Geochemistry. Springer Verlag, pp. 81-122. Preprint
  • Utting, N., B. Lauriol, N. Mochnacz, W. Aeschbach-Hertig, I. Clark, 2013. Noble gas and isotope geochemistry in western Canadian Arctic watersheds: tracing groundwater recharge in permafrost terrain. Hydrogeol. Hydrogeol. J., 21: 79-91 .
  • Kluge, T., H. P. Affek, T. Marx, W. Aeschbach-Hertig, D. F. C. Riechelmann, D. Scholz, S. Riechelmann, A. Immenhauser, D. K. Richter, J. Fohlmeister, A. Wackerbarth, A. Mangini, and C. Spotl, 2013. Reconstruction of drip-water δ 18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany). Clim. Past 9: 377-391.
  • Freundt, F., T. Schneider and W. Aeschbach-Hertig, 2013. Response of noble gas partial pressures in soil air to oxygen depletion, Chem. Geol. 339: 283-290.
  • Jung, M., M. Wieser, A. von Oehsen and W. Aeschbach-Hertig, 2013. Properties of the closed-system equilibration model for dissolved noble gases in groundwater, Chem. Geol., 339: 291-300.
  • Aeschbach-Hertig, W., and T. Gleeson, 2012. Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience, 5: 853-861.
  • Kluge, T., C. von Rohden, P. Sonntag, S. Lorenz, M. Wieser, W. Aeschbach-Hertig and J. Ilmberger, 2012. Localising and quantifying groundwater inflow into lakes using high-precision 222Rn profiles. J. of Hydrology, 450-451: 70-81.
  • Tröndle, T., U. Platt, W. Aeschbach-Hertig, K. Pfeilsticker, 2012. Erneuerbare Energie fur Europa. Phys. Unserer Zeit, Vol. 43(6): 300-306.
  • Utting, N., I. Clark, B. Lauriol, M. Wieser and W. Aeschbach-Hertig, 2012. Origin and flow dynamics of perennial groundwater in continuous permafrost terrain using isotopes and noble gases: Case study of the Fishing Branch River, Northern Yukon, Canada. Permafrost Periglac., 23 Vol. 2: 91-106.
  • Sanford, W. E., W. Aeschbach-Hertig, A. Herczeg, 2011. Preface: Insights from environmental tracers in groundwater systems. Hydrogeol. J., 19: 1-3.
  • Welte, J., F. Ritterbusch, I. Steinke, M. Henrich, W. Aeschbach-Hertig, and M. K. Oberthaler, 2010. Towards the realization of atom trap trace analysis for 39Ar. New J. Phys. 12, 065031(14pp).
  • Newman, B. D.; K. Osenbruck; W. Aeschbach-Hertig; D. K. Solomon; P. Cook; K. Rozanski; R. Kipfer, 2010. Dating of 'young' groundwaters using environmental tracers: advantages, applications, and research needs. Isotopes in Environ. and Health Studies, 46(3): 259- 278.
  • Kluge, T., D.F.C. Riechelmann, M. Wieser, C. Spotl, J. Sultenfuß, A. Schroder-Ritzrau, S. Niggemann, W. Aeschbach-Hertig, 2010. Dating cave drip water by tritium. J. of Hydrology, 394: 396-406.
  • Von Rohden, C., A. Kreuzer, Z. Chen, and W. Aeschbach-Hertig, 2010. Accumulation of natural SF6 in the sedimentary aquifers of the North China Plain as a restriction on groundwater dating. Isotopes in Environ. and Health Studies, 46(3): 279-290.
  • Kluge,T., M. Wieser, and W. Aeschbach-Hertig, 2010. Assessing the use of 3H-3He dating to determine the subsurface transit time of cave drip waters. Isotopes in Environ. and Health Studies, 46(3): 299- 311.
  • Blaser, P.C., R. Kipfer, H.H. Loosli, K. Walraevens, M. van Camp, and W. Aeschbach-Hertig, 2010. A 40 ka record of temperature and permafrost conditions in northwestern Europe from noble gases in the Ledo-Paniselian Aquifer (Belgium). J. Quaternary Sci, 25:1038-1044.
  • Von Rohden, C., A. Kreuzer, Z. Y. Chen, R. Kipfer, and W. Aeschbach-Hertig, 2010. Characterizing the recharge regime of the strongly exploited aquifers of the North China Plain by environmental tracers. Water Resour. Res., 46, W05511,doi:10.1029/2008WR007660
  • Blaser, P.C., M. Coetsiers, W. Aeschbach-Hertig, R. Kipfer, M. Van Camp, H.H. Loosli, and K. Walraevens, 2010. A new groundwater radiocarbon correction approach accounting for palaeoclimate conditions during recharge and hydrochemical evolution: The Ledo-Paniselian Aquifer, Belgium. Appl. Geochem., 25: 437- 455.
  • Shotyk, W., M. Krachler, W. Aeschbach-Hertig, S. Hillier, and J. C. Zheng, 2010. Trace elements in recent groundwater of an artesian flow system and comparison with snow: enrichments, depletions, and chemical evolution of the water. J. Environ. Monit. 12: 208- 217.
  • Holzner, C. P., W. Aeschbach-Hertig, M. Simona, M. Veronesi, D. M. Imboden, and R. Kipfer, 2009. Exceptional mixing events in meromictic Lake Lugano (Switzerland/Italy), studied using environmental tracers. Limnol. Oceanogr. 54: 1113-1124.
  • Kreuzer, A. M., C. von Rohden, R. Friedrich, Z. Chen, J. Shi, I. Hajdas, R. Kipfer, and W. Aeschbach-Hertig, 2009. A record of temperature and monsoon over the past 40 kyr from groundwater in the North China Plain. Chem. Geol., 259: 168-180.
  • Aeschbach-Hertig, W., 2009. Clean coal and sparkling water. Nature 458: 583-584. pdf
  • von Rohden, C., J. Ilmberger and B. Boehrer, 2009. Assessing groundwater coupling and vertical exchange in a meromictic mining lake with an SF6-tracer experiment. J. Hydrol., 372: 102-108.
  • Corcho Alvarado, J. A., F. Barbecot, R. Purtschert, M. Gillon, W. Aeschbach-Hertig, and R. Kipfer, 2009. European climate variations over the past half-millennium reconstructed from groundwater. Geophys. Res. Lett., 36, L15703, doi:10.1029/2009GL038826.
  • Welte, J., I. Steinke, M. Henrich, F. Ritterbusch, M. K. Oberthaler, W. Aeschbach-Hertig, W. H. Schwarz, and M. Trieloff, 2009. Hyperfine spectroscopy of the 1s5-2p9 transition of 39Ar. Rev. Sci. Instrum. 80, 113109, doi:10.1063/1.3257691.
  • Aeschbach-Hertig, W., H. El-Gamal, M. Wieser, and L. Palcsu, 2008. Modeling excess air and degassing in groundwater by equilibrium partitioning with a gas phase. Water Resour. Res. 44, W08449, doi:10.1029/2007WR006454.
  • Kluge, T., T. Marx, D. Scholz, S. Niggemann, A. Mangini, and W. Aeschbach-Hertig, 2008. A new tool for palaeoclimate reconstruction: Noble gas temperatures from fluid inclusions in speleothems. Earth Planet. Sci. Lett., 269: 407-414.
  • Scheidegger, Y., T. Kluge, R. Kipfer, W. Aeschbach-Hertig, R. Wieler, 2008. Paleotemperature reconstruction using noble gas concentrations in speleothem fluid inclusions. PAGES News 16: 10-12. pdf
  • Kluge, T., J. Ilmberger, C. von Rohden, W. Aeschbach-Hertig, 2007. Tracing and quantifying groundwater inflow into lakes using radon-222. Hydrol. Earth Syst. Sci. 11: 1621-1631.
  • Corcho Alvarado, J. A., R. Purtschert, F. Barbecot, C. Chabault, J. Rüedi, V. Schneider, W. Aeschbach-Hertig, R. Kipfer, and H.H. Loosli, 2007. Constraining the age distribution of highly mixed groundwater using 39Ar: a multiple environmental tracer (3H/3He, 85Kr, 39Ar and 14C) study in the semi-confined Fontainebleau Sands aquifer (France). Water Resour. Res. 43, W03427, doi:10.1029/2006WR005096.
  • Aeschbach-Hertig, W., C. P. Holzner, M. Hofer, M. Simona, A. Barbieri, and R. Kipfer, 2007. A time series of environmental tracer data from deep meromictic Lake Lugano, Switzerland. Limnol. Oceanogr. 52: 257-273. 
  • von Rohden, C., K. Wunderle, and J. Ilmberger, 2007. Parameterisation of the vertical transport in a small thermally stratified lake. Aquat. Sci. 69: 129-137.
  • Wollschlager, U., J. Ilmberger, M. Isenbeck-Schroter, A. M. Kreuzer, C. von Rohden, K. Roth, and W. Schäfer, 2007. Coupling of groundwater and surface water at Lake Willersinnweiher: Groundwater modeling and tracer studies. Aquat. Sci. 69: 138-152.
  • Aeschbach-Hertig, W., 2007. Rebuttal of "On global forces of nature driving the Earth's climate. Are humans involved?" by L. F. Khilyuk and G. V. Chilingar. Env. Geol. DOI 10.1007/s00254-006-0519-3.
  • Edmunds, W. M., J. Z. Ma, W. Aeschbach-Hertig, R. Kipfer, and D. P. F. Darbyshire, 2006. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl. Geochem. 21: 2148-2170.
  • Kreuzer, A. M., C. Zongyu, R. Kipfer, and W. Aeschbach-Hertig, 2006. Environmental Tracers in Groundwater of the North China Plain. In: Isotopes in Environmental Studies - Aquatic Forum 2004. IAEA, Vienna, C&S Papers Series 26/P: 136-139. pdf
  • Aeschbach-Hertig, W., 2005. A comment on "Helium sources in passive margin aquifers - new evidence for a significant mantle 3He source in aquifers with unexpectedly low in situ 3He/ 4He production" by M. C. Castro [Earth Planet. Sci. Lett. 222 (2004) 897-913], Earth Planet. Sci. Lett. 240: 827-829. pdf
  • Corcho Alvarado, J. A., R. Purtschert, K. Hinsby, L. Troldborg, M. Hofer, R. Kipfer, W. Aeschbach-Hertig, and H.-A. Synal, 2005. 36Cl in modern groundwater dated by a multi tracer approach (3H/3He, SF6, CFC-12 and 85Kr): A case study in quaternary sand aquifers in the Odense Pilot River Basin, Denmark. Appl. Geochem. 20: 599-609. pdf
  • Peeters, F., U. Beyerle, W. Aeschbach-Hertig, M. S. Brennwald, and R. Kipfer, 2004. Response to the comment by G. Favreau, A. Guero, and J. Seidel on "Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios" (2003) Geochim. Cosmochim. Acta, 67, 587-600. Geochim. Cosmochim. Acta 68: 1437-1438. pdf
  • Beyerle, U., J. Rüedi, M. Leuenberger, W. Aeschbach-Hertig, F. Peeters, R. Kipfer, and A. Dodo, 2003. Evidence for periods of wetter and cooler climate in the Sahel between 6 and 40 kyr BP derived from groundwater. Geophys. Res. Lett. 30, DOI 10.1029/2002GL016310. pdf
  • Brennwald, M. S., M. Hofer, F. Peeters, W. Aeschbach-Hertig, K. Strassmann, R. Kipfer, and D. M. Imboden, 2003. Analysis of dissolved noble gases in the porewater of lacustrine sediments. Limnol. Oceanogr.: Methods 1: 51-62. pdf 
  • Holocher, J., F. Peeters, W. Aeschbach-Hertig, W. Kinzelbach, and R. Kipfer, 2003. Kinetic model of gas bubble dissolution in groundwater and its implications for the dissolved gas composition. Environ. Sci. Technol. 37: 1337-1343. pdf  supporting material
  • Lehmann, B. E., A. Love, R. Purtschert, P. Collon, H. H. Loosli, W. Kutschera, U. Beyerle, W. Aeschbach-Hertig, R. Kipfer, S. K. Frape, A. Herczeg, J. Moran, I. Tolstikhin, and M. Gröning, 2003. A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia. Earth Planet. Sci. Lett. 211: 237-250. pdf
  • Peeters, F., U. Beyerle, W. Aeschbach-Hertig, J. Holocher, M. S. Brennwald, and R. Kipfer, 2003. Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios. Geochim. Cosmochim. Acta 67: 587-600. pdf

Other publications

Conference abstracts