In a recent article, M.C. Castro [1] uses a numerical groundwater model to study the transport of He isotopes in the Carrizo aquifer, Texas. The main result is that an unexpectedly large mantle 3He component is present in this system, masked by the in situ produced He with a very low 3He/4He ratio. Suggested implications are that groundwater modeling is needed to fully understand the mixing and transport of He components of different origin and that the flux of mantle 3He through the crust may previously have been underestimated.

I will show in the following that the results obtained in this study are hardly surprising and essentially could have been obtained by simple mixing calculations. I conclude that complex models are not needed to assess the mantle 3He fraction in groundwaters, and that there is no need to re-evaluate any previous mantle He flux estimates. I start with a discussion of the mixing of two He components, as this calculation seems to have been misinterpreted.

1. He isotope mixing calculations

I consider the He isotope ratio of a sample (s) consisting of a mixture of a crustal (c) and a mantle (m) He component, which leads to a simplified form of Eq. (1) of Castro [1]:

\[R_s = \frac{^{3}\text{He}_s}{^{4}\text{He}_s} = \frac{^{3}\text{He}_c + ^{3}\text{He}_m}{^{4}\text{He}_c + ^{4}\text{He}_m}. \]

This can be rewritten as:

\[R_s = \frac{^{4}\text{He}_c R_c + ^{4}\text{He}_m R_m}{^{4}\text{He}_c} = x R_m + (1 - x) R_c. \]

where R_c and R_m denote the 3He/4He ratios of the two components and x is the mantle 4He fraction ($x = ^{4}\text{He}_m/^{4}\text{He}_c$) in the sample. Solving Eq. (2) for x yields:

\[x = \frac{R_s - R_c}{R_m - R_c}. \]

Note that x is the mantle fraction of ^{4}He (which is essentially identical to the total He), but not of 3He. The mantle fraction of 3He is given by:

\[y = \frac{^{3}\text{He}_m}{^{3}\text{He}_s} = \frac{^{4}\text{He}_m R_m}{^{4}\text{He}_c R_s} = x \frac{R_m}{R_s}. \]

Castro [1] clearly got this wrong when she wrote that the He isotope ratio of the external He flux derived for the Carrizo aquifer of $R_{\text{ext}} = 1.9 \cdot 10^{-7}$ ($R_{\text{ext}}/R_s = 0.14$, where R_s is the atmospheric 3He/4He ratio) would indicate 1.5% mantle 3He contribution if typical
mantle and crustal isotope ratios of $R_{\text{m}}=1.2 \times 10^{-5}$ and $R_{\text{c}}=2 \times 10^{-8}$ are assumed (p. 906 in [1]). In fact, these values yield a 4He mantle fraction (x) of 1.5%, but a 3He mantle fraction (y) of 90%. The same mistake is repeated on p. 910 in [1], where a R_{ext} value of 4 R_a is said to indicate a 46% mantle 3He fraction, when in reality it is 46% mantle 4He and 99.8% mantle 3He. These results are indeed surprising at first sight, but they are a natural consequence of the extreme differences in the He isotope ratios of the different geochemical reservoirs. For illustration, consider the limiting case $R_a=0$. In this case, there is no crustal 3He at all, thus 3He is always 100% of mantle origin, while the fractions for 4He (and total He) remain nearly unchanged. Anyone familiar with these mixing calculations should therefore not be surprised that even a rather low 3He/4He ratio can indicate a high mantle contribution for 3He, while the mantle fraction of 4He is small.

A major issue in the paper of Castro [1] is the masking of a relatively high 3He/4He ratio of the external He flux to the aquifer by the in situ produced He with a very low 3He/4He ratio. This effect can entirely be understood in terms of simple mixing calculations, without a numerical model. For instance, the “quasi-instantaneous lowering of the R_{ext}/R_a . . . as external helium enters the aquifer . . . from 0.14 to 0.055 at the base of the Carrizo” (p. 909 in [1]) is simply the consequence of two-component mixing. Using Eqs. (3) and (4) above, but inserting as endmembers the external flux with $R_{\text{ext}}=0.14$ R_a (instead of R_{m}), the in situ production with $R_{\text{m}}=0.0025$ R_a (instead of R_c), and the measured excess ratio R_{exc} of 0.055 R_a (for R_a) yields a relative contribution of the external flux of 38% to 4He (x) and 97% to 3He (y). These results agree very well with the model results shown in Fig. 6 in [1], but are derived from a simple mixing calculation.

Also the finding that even a roughly 6 times higher isotope ratio for the in situ production can explain the depression of the excess He isotope ratio discussed on p. 911 of [1] is fully explained by mixing: Increasing R_{m} to 0.0144 R_a (based on the 3He production rates given on p. 911 and in Table 2 of [1]) and keeping $x=0.38$, Eq. (2) with the above substitutions yields $R_{\text{exc}}=0.062 R_a$, i.e., just slightly higher than measured, as found with the numerical model. Similarly, the strong reduction of hypothetical much higher values for R_{ext} at the base of the aquifer can simply be understood by the above mixing equations and fractions (e.g., according to Eq. (2) mixing 38% of external flux He with $R_{\text{ext}}=1.4 R_a$ with 62% of in situ produced He with $R_{\text{in}}=0.0025 R_a$ reduces the excess isotope ratio to 0.53 R_a, or by factor of 2.6 compared to R_{ext}, similar to the factor of 2.8 stated on p. 910 in [1]).

In fact, there is no reason why the numerical transport model should reveal anything about the change of the He isotope ratio that could not simply be explained by mixing of the different He components. The only mechanism by which the model could introduce an isotope fractionation that is not captured by the mixing calculations would be the different molecular diffusivities of 3He and 4He. But, as stated in the paper (p. 904 in [1]), the effects of this difference are negligible, since advection is dominant.

2. The use of He and 14C data

The only piece of information the numerical model does provide, which could not have been derived from the He data alone, is the isotope ratio of the external flux, or, equivalently, the mixing ratio of the external and in situ produced components. There is however a way how this information could have been derived directly from data. If we knew the age (residence time) of the groundwater in the Carrizo, the in situ component could be calculated from the production rates. In fact, there are 14C ages for the Carrizo aquifer, used in an earlier paper of Castro et al. [2] and in the paper of Stute et al. [3], where the He data originate from. Unfortunately, of the samples with He data listed in Table 1 of [1], only very few have a 14C age listed in Table 1a of [2]. Looking for a relatively old sample, where 14C ages and 4He excesses should have comparatively small relative errors, I used sample TX04 to demonstrate how the isotope ratio of the external flux can be estimated from original data. From the 14C age of this sample of 32.7 kyr [2], and the 4He production rate of 3.3×10^{-18} mol m$^{-3}$ s$^{-1}$ (Table 2 in [1]), one can calculate that 3.4×10^{-6} mol m$^{-3}$ of 4He have been produced in situ. This is only 20% of the total He excess of 16.8×10^{-6} mol m$^{-3}$ at this site (Table 1 in [1]), thus 80% of the excess originate from the external flux. Using these fractions ($x=0.8$) and $R_{\text{in}}=0.0025 R_a$, the mixing equations tell us that the isotope ratio of the external flux R_{ext} has to be about 0.09 R_a in order to produce the observed excess isotope ratio R_{exc} of 0.07 R_a in this sample (or about 0.07 R_a to produce the typical R_{exc} of 0.055 R_a).

This result differs significantly from that of Castro [1], who postulates that about 60% of the non-atmospheric He excess originate from in situ production and 40% from the external flux (see Fig. 6b in [1] for high distances with negligible atmospheric contribution) and consequently requires a higher R_{ext} of 0.14 R_a to ex-
plain the mean observed R_{exc} of 0.055 R_a. The higher fraction of in situ produced He implies a higher age of the water (roughly by a factor of 3 for TX04). Thus, it appears to me that the numerical model calibrated with 4He data is not consistent with 14C data from the aquifer. This problem is even more obvious from a previous paper by Castro and Goblet [4], which apparently is based on the same model. The contradiction with the 14C ages was resolved in that paper by simply discarding the 14C ages and using model-derived age estimates instead. The authors of that paper were not unsettled in trusting their model more than the 14C data by the fact that their radically new dating combined with noble gas temperatures yields very surprising paleoclimatic implications.

In yet another related paper on the Carrizo aquifer [5], Castro and Goblet discuss the problem of the non-uniqueness of the calibration of numerical models by hydraulic head data, and show that by using the He data they can select one of four scenarios for the distribution of hydraulic conductivities in the aquifer. I perfectly agree that He concentrations are very useful constraints for groundwater models, but I find it disturbing that equally important 14C data apparently have been disregarded. I also agree with the view that 14C dating of groundwater is problematic [4], but our knowledge of the He production and transport in the crust is also incomplete. It certainly is an important improvement to include the He data in the calibration of a numerical groundwater model, but if the resulting travel times differ so strongly from 14C ages as a comparison of the age scales of Castro and Goblet [4] and Stute et al. [3] indicates, I remain doubtful of the uniqueness of the model calibration. Indeed, a simpler analytical model used by Castro et al. [2] apparently was in better agreement with both the 4He and 14C data.

3. Conclusions

Numerical models are a great thing, but data are the primary source of information that we have and should be used as much as possible. Sometimes more can be learned from interpreting data with simple concepts rather than complex models. All the information on mantle 3He contributions given by Castro [1] could have been derived by simple mixing calculations using the primary He data (and plots such as Fig. 2 in [1], which incorrectly are said not to allow for the estimation of contributions of specific components). The only new information obtained from the model is the very high residence time for the downstream part of the aquifer, and this is at odds with the 14C data. I feel more confident in using the original data, which tell me that the He in the Carrizo aquifer is dominated by an external flux with an isotope ratio R_{ext} just slightly higher than the ratio of 0.055 R_a observed in the total He excess.

Finally, what does all this mean for the flux of mantle He? Independent of the exact value of R_{ext}, the mantle/crust mixing calculation essentially depends on the value of R_a assumed for the crustal endmember. Since the He excess is more or less strongly influenced by the external flux, the production ratio in its source region would need to be known. In the absence of other information, I propose to use the “typical” crustal value of $R_c = 2 \times 10^{-3}$ or 0.014 R_a. With this value, $R_m = 9 R_a$, and Eq. (3), the mantle He (4He) contribution to the external flux lies between 0.5% and 1.5%, depending on the value for R_{ext} (between 0.055 R_a and 0.14 R_a).

Of course, the mantle 4He contribution is much larger, between 70% and 90%, but one definitely does not need a numerical model to learn that. Large scale mantle 3He flux estimates do not depend on the details of He production in single aquifers, but rather on the mean 3He/4He production ratio in the crust.

References

